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Abstract—Knee joint impedance varies substantially during
physiological gait. Quantifying this modulation is critical for the
design of transfemoral prostheses that aim to mimic physiolog-
ical limb behavior. Conventional methods for quantifying joint
impedance typically involve perturbing the joint in a controlled
manner, and describing impedance as the dynamic relationship
between applied perturbations and corresponding joint torques.
These experimental techniques, however, are difficult to apply
during locomotion without impeding natural movements. In this
paper, we propose a method to estimate the elastic component
of knee joint impedance that depends on muscle activation,
often referred to as active knee stiffness. The method estimates
stiffness using a musculoskeletal model of the leg and a model for
activation-dependent short-range muscle stiffness. Muscle forces
are estimated from measurements including limb kinematics,
kinetics and muscle electromyograms. For isometric validation,
we compare model estimates to measurements involving joint
perturbations; measured stiffness is 17 % lower than model
estimates for extension, and 42 % lower for flexion torques. We
show that sensitivity of stiffness estimates to common approaches
for estimating muscle force is small in isometric conditions. We
also make initial estimates of how knee stiffness is modulated
during gait, illustrating how this approach may be used to obtain
parameters relevant to the design of transfemoral prostheses.

I. Introduction

The mechanical properties of the human leg can be tuned

to maximize performance over a wide range of behaviors,

and even during different phases of a single behavior. For

example, during locomotion, the leg must be sufficiently stiff to

prevent buckling at heel strike, yet also sufficiently compliant

to allow for an effortless swing phase. Understanding how

leg mechanics are modulated across different tasks, including

locomotion, is an important problem in human motor control.

It is also critical for understanding how to design artificial legs

that can begin to replicate the capabilities of the unimpaired

human lower limb. Current approaches for regulating knee

stiffness in artificial devices are largely heuristic [1], since

quantitative estimates of how knee stiffness is modulated dur-

ing locomotion are not available. Here we propose a method

for obtaining those estimates in a manner that does not impede

natural locomotor behaviors.

The mechanical properties of a limb and the joints within

that limb can be characterized by their mechanical impedance.

The impedance of a joint describes the dynamic relationship

between an externally induced movement of a joint and

the torques required to effect that movement [2]. For small

displacements, impedance can be described by the inertial,

viscous and elastic properties of the joint [3]. The viscous and

elastic properties of a joint arise from the passive properties

of the anatomical structures within and surrounding the joint,

as well as from the activation-dependent properties of the

muscles spanning the joint [4], [5]. Joint viscoelasticity can be

changed through changes in muscle activation, as determined

from previous experiments [6], [7]. The activation-dependent

elasticity, or stiffness, of the muscles spanning the joint

is thought to be closely linked to the short-range stiffness

properties of muscle [8]. In many cases, there appears to

be a close relationship between muscle or joint stiffness and

the corresponding viscosity [3], suggesting that if one can be

estimated, the other can be at least approximately inferred.

Experiments to determine joint stiffness typically involve

perturbing the joint in a controlled manner and measuring the

corresponding motions and torques. These methods have been

applied to assess passive knee joint stiffness (i.e. when muscles

are not activated) [2], [9], [10]; research on active joint

stiffness (i.e. joint stiffness attributed to activation-dependent

muscle elasticity) for the lower limb mainly focused on the

ankle joint, for example investigating dependence of stiffness

on ankle angle [11], ankle torque [6], [12], influence of co-

contraction [13] or stiffness variation due to non-isometric

contractions [14]. Fewer studies have been published on active

knee joint stiffness. Those that have been completed consid-

ered only isometric conditions, and reported similar findings

to those observed at the ankle [7], [15].

Direct estimates of knee stiffness during locomotion would

require a device that can perturb the knee without impeding

natural movements, which is at best difficult. Therefore, an

approach that does not hinder natural movements is needed.

A few such methods have been suggested for the upper limb,

though these require subject-specific calibration, often together

with experimental measurements of stiffness [16], [17].

In this paper, we propose a method to estimate active

knee joint stiffness using a detailed musculoskeletal model
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Fig. 1. Overview of method to determine active knee joint stiffness ka. Two different methods are used for muscle force estimation: one is based on load
sharing (Section II-C) and one is based on EMG (Section II-D). Inputs of the algorithm are knee flexion angle θ and force sensor or force-plate signals F , or
EMG signals. In the static case the inverse-dynamics block reduces to a simple kinematic transformation. Intermediate variables are: torque τ, musculotendon
forces fMT, musculotendon stiffnesses kMT. The vector of moment arms r is used for muscle force estimation based on load sharing, and for the kinematic
mapping from musculotendon stiffness to joint stiffness.

of the leg [18] and a parameterized model for short-range

stiffness [19]. We also present initial results validating model

performance during isometric conditions, and evaluating its

sensitivity to the assumptions within the model. We also make

initial estimates of how knee stiffness is modulated during gait,

illustrating how this approach may eventually be used to obtain

parameters relevant to the design of transfemoral prostheses

for the restoration of locomotion.

II. Model

We propose a model-based method to estimate active knee

joint stiffness without the need to apply perturbations to the

joint (Fig. 1). A key requirement of the approach is the estima-

tion of individual muscle forces. Many different combinations

of muscle forces can produce the same torque, as the knee

joint is spanned by many muscles. Two different methods

are commonly used in the literature. Muscle forces are either

estimated by distributing the joint torque among the muscles

spanning a joint using optimization techniques [20], which

is also called load sharing. Joint torque is usually found by

inverse dynamics. The other commonly used method involves

EMG recordings, which yield estimates of muscle activity

from which muscle force can be computed. We evaluate both

methods, as both have their advantages and disadvantages;

load sharing typically fails to predict any co-contraction, and

EMG-based estimates usually fail to estimate muscle forces

that result in the measured joint torque.

A. Musculoskeletal Model

We used the lower-limb model developed by Arnold et

al. [18], which features seven degrees of freedom and 43

muscles. We only considered the twelve muscles spanning the

knee joint (listed in Section II-D). Parameters of the model

like maximal isometric force, pennation angle, and optimal

fiber length are based on a parameter study examining 35

cadavers [21]. It is implemented in OPENSIM, an open-source

software for musculoskeletal modeling and simulations [22].

The input of the model is the knee flexion angle, the outputs

are the moment arms of each muscle.

B. Musculotendon-Stiffness Model

The musculotendon stiffness was modeled as muscle stiff-

ness in series with tendon stiffness, as commonly done in the

literature (e.g. by Morgan [23]). Tendon stiffness was modeled

based on a dimensionless force-strain curve as proposed

by Zajac [24] and implemented by Delp et al. [25]. The

parameters were taken from the lower-limb model [18]. As

described in the introduction, we modeled the muscle’s short-

range stiffness, which has been shown to be proportional to

the muscle force and inversely proportional to the optimal

fiber length [19], [26]. We used the proportionality constant

identified by Cui et al. based on measurements with feline

muscles [19] which has already been successfully applied to

the human arm [27].

C. Muscle Force Estimation Based on Load Sharing

Knee joint torque was determined using conventional in-

verse dynamics. To estimate individual musculotendon force

we used a static optimization based on the min-max objective

function, which in the case of a single degree of freedom joint

reduces to an analytical solution: All muscles which cannot

actively contribute to the observed torque (antagonists) will be

set to zero; the active muscles (agonists), which are either the

four extensors or the eight flexors in the model, are equally

activated [28]. We compared the results to results obtained

by minimizing the sum of squared muscle forces [29]. In

both cases we used the normalization factor Ni = f 0
M,i
· cosαi

for each musculotendon unit i, where f 0
M,i

is its maximum

isometric force, and αi is its pennation angle.

We also estimated the muscle activity aLS corresponding

to the forces described above so that the results of the load

sharing algorithm could be compared to the experimentally

measured EMG, which is our proxy for muscle activity. This

was done simply by dividing the estimated muscle force by the

maximum force attainable by that muscle, as defined in our

model [18]. This normalized measure of muscle activation was

then compared to the EMG-based estimate, described below.

D. Muscle Force Estimation Based on EMG

As an alternative to load sharing (Section II-C) an EMG-

based approach was used to estimate muscle forces. In contrast

to load sharing, which relies on an inverse dynamic model to

obtain joint torque, the EMG-based approach directly operates

on the level of muscle activations. The downside of the latter

is large measurement noise. Transcutaneous EMG of seven

easily accessible muscles (rectus femoris (rf), vastus lateralis
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(vl), vastus medialis (vm), semitendinosus (st), biceps femoris

long head (blh), gastrocnemius medialis (gm), gastrocnemius

lateralis (gl)) was recorded. The remaining five muscles in

the model spanning the knee joint, which are less easy to

access, were estimated similar to Barrett et al. [30]: the vastus

intermedius (vi), the biceps femoris short head (bsh), the

semimembranosus (sm), the gracilis (gr) and the sartorius

(sr). The respective activations a were: avi = 0.5 · (avm + avl),

absh = ablh, asm = ast, agr = asr = 0.5 · (ablh + ast). EMGs were

sampled at 1200 Hz after an analog bandpass filter between

5 Hz and 500 Hz. The recorded EMG was rectified and filtered

using an RMS filter with window size 200 ms. A delay of

50 ms accounted for the delay between EMG signal and

muscle force. The signals were normalized to values obtained

during maximum voluntary contractions (MVC), yielding the

EMG-based estimate of muscle activity aEMG. These estimates

for each muscle i were multiplied by f 0
M,i
· cosαi to obtain the

muscle force; f 0
M,i

is the muscle’s maximum isometric force

and αi is its pennation angle (values from the literature [21]).

III. EvaluationMethods

A. Load-Sharing Accuracy

As an indication of the accuracy with which muscle activity

can be estimated, we quantified the discrepancy between the

two fundamentally different procedures, load sharing (Section

II-C) and EMG measurements (Section II-D).

Both computational procedures were evaluated on a single

experimental data set. In these experiments six subjects per-

formed isometric contractions while seated in a device that al-

lows measurement of knee torque (described previously [31]);

their foot was fixed and the knee angle was between 80◦

and 86◦. Subjects were required to maintain constant knee

torques of either 15 % or 30 % of their maximum voluntary

contraction in extension and flexion. Contractions at each level

were maintained for six seconds; two measures were obtained

at each level. The first and last second of each trial were

discarded and only the four middle seconds were analyzed.

B. Model Validation under Isometric Conditions

To validate our model-based estimates of knee stiffness,

we also obtained perturbation-based estimates under isometric

measurements. Data were collected from four subjects. All

procedures were approved by the Institutional Review Board

at Northwestern University.

Perturbations were applied by a rotary torque motor config-

ured as a rigid position servo. Subjects were attached to the

motor using a custom-made thermoplastic cast extending from

the toes to just below the knee. The knee was maintained at

a flexion angle of θ = 60◦, and stochastic perturbations with

a bandwidth of 7 Hz and a standard deviation of 0.5◦ were

applied for the purpose of stiffness estimation. Experimental

trials lasted for 60 seconds, during which subjects were

instructed to produce constant knee flexion torques ranging

from −40 Nm up to 40 Nm in steps of 10 Nm.

Mechanical impedance was estimated nonparametrically [3].

The responses, which were second-order, were then parame-

terized by the following equation.

τ(s)

θ(s)
= Is2 + bs + k

The parameter I is inertia, b viscosity, and the static gain k

corresponds to elasticity or stiffness, which we compared to

model estimates. The average stiffness when no torque was

exerted by the subjects, the passive joint stiffness kp, was

subtracted from all measurements, because the model only

predicts active joint stiffness ka.

The experimentally identified values of the stiffness k =

ka + kp were compared to model-based estimates in matched

conditions (fixed flexion angle θ = 60◦ at different flexion and

extension torques). Only muscle forces obtained through load

sharing were considered, since EMGs were not available for

this data set. Specifically, the min-max criterion described in

Section II-C was used. Muscle parameters were taken from our

model described above [18], not specified for each subject in

our experiments.

C. Stiffness during Gait

We also made initial attempts to estimate stiffness during

gait. This was computed over five gait cycles for one healthy

male subject (28 years old, 70 kg, 180 cm). The data used for

these estimates was obtained during level-ground walking. It

contained kinematic data (hip, knee and ankle angles) obtained

with an optical tracking system (Vicon), kinetic data obtained

using inverse dynamics and force platform measurements

(Kistler), and EMG-measurements from six muscles; the same

muscles as described in Section II-D, but without the rectus

femoris. The activity of the rectus femoris was assumed to

be equal to the mean of vastus medialis and vastus lateralis,

analog to the method already applied for the hardly accessible

muscles [30]. Resulting stiffness based on load sharing (Sec-

tion II-C) and based on EMG (Section II-D) was compared.

IV. Results

A. Load-Sharing Accuracy

There were substantial differences between the muscle

activations estimated from the load-sharing and EMG algo-

rithms (Fig. 2). This was quantified by the standard deviation

of these differences across all muscles and subjects. This

measure was high and increased slightly with increasing

activation. For the min-max criterion the standard deviation

was 6.9 %MVC (mean value 1.4 %MVC) for the tasks where

subjects had to exert 15 % of their maximal torque capacity,

and 9.4 %MVC (mean value 3.7 %MVC) for the 30 %-torque

tasks. Results for load sharing based on the sum of normalized

squared muscle forces were slightly worse (mean 3.6 %MVC,

std. dev. 8.5 %MVC for 15 % torque, mean 7.8 %MVC, std.

dev. 12.7 %MVC for 30 % torque). Based on these results

we performed a sensitivity analysis to investigate influence of

these different estimates of muscle force distribution on knee

stiffness, as described in the following section.
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B. Sensitivity of Stiffness to Load-Sharing Accuracy

A Monte-Carlo analysis was used to investigate the sensi-

tivity of joint stiffness estimates to the distribution of mus-

cle forces obtained using the EMG-based approach and the

min-max load-sharing algorithm. Model-based estimates of

stiffness were determined for a torque range from −50 Nm

to 50 Nm flexion torque in steps of 2 Nm; the knee angle

was fixed at 60◦ for all simulations. Muscle activations were

estimated using load sharing with the min-max criterion, which

sets the antagonistic muscles to zero. Random errors were

added to the activations of the agonist muscles to simulate

the range of differences that could be obtained from kinetic

and EMG-based estimates of muscle force. The standard

deviation of the activation errors was obtained from the results

presented in Fig. 2 as follows. Because we observed increasing

errors with increasing activity, a linear model of the standard

deviation of aEMG − aLS was fit to the data. This model of the

error standard deviation was used to generate simulated muscle

activations with a normal distribution about the min-max

estimate; the resulting muscle activations were not constrained

to produce the original knee torque. We performed 1000

simulations using these random activation errors.

Overall, the joint stiffness estimates were relatively insen-

sitive to changes in muscle activation. The greatest variation

in predicted knee stiffness was at low force levels. This is

likely due to the nature of our Monte Carlo simulations,

which incorporated a model of activation uncertainty that

was high even at low muscle forces. The standard deviation

of the estimated knee stiffness at 10 Nm of knee flexion

was 32.6 Nm/rad, which is 41.7 % of the corresponding min-

max estimate (Fig. 3). In contrast, the standard deviation of

the modeled activation error was 117.8 % of the min-max

activation estimate at this same knee torque. This corresponds

to a sensitivity of approximately 37 %. At 50 Nm of knee

flexion, the standard deviation of the stiffness estimates was

11.3 %, and that of the muscle activation was 34.7 % of the
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for different knee torque levels evaluated using different muscle activations.
Stiffness resulting from load sharing based on the min-max criterion and load
sharing based on the sum of squared normalized muscle forces (min (f)2) is
shown, together with mean and standard deviation of the Monte-Carlo analysis
described in Section IV-B.

activation level. The sensitivity at these higher forces is similar

(33 %), yet the accuracy of the stiffness estimation is greater

due to the smaller range of relative muscle activations.

C. Model Validation under Isometric Conditions

The knee stiffness measured during isometric conditions

increased similar to that predicted by the model, though the

prediction accuracies differed between flexion and extension.

Only active stiffnesses were compared, since our model does

not predict passive joint stiffness. The experimentally mea-

sured passive stiffness ranged from 37− 57 Nm/rad across the

four tested subjects. Model estimates reproduced experimen-

tally identified stiffness better for extension torques than for

flexion torques (Fig. 4); on average, excluding the zero torque

conditions, experimentally measured stiffness was 17 % (std.

dev. 9 %) lower than model estimates for extension torques,

and 42 % (std. dev. 13 %) lower for flexion torques.

D. Stiffness during Gait

The magnitudes of the active knee stiffness during gait esti-

mated based on load sharing and based on EMG were remark-

ably similar with a maximum of approximately 600 Nm/rad

(Fig. 5). This result is consistent with our finding that stiffness

magnitude is relatively insensitive to changes in muscle load

sharing (Fig. 3). However, there was a substantial difference

in timing; stiffness based on EMG increased prior heel strike,

most likely due to preparatory co-contraction, while stiffness

based on load sharing did not increase until after heel strike,

due to its inability to estimate muscle co-contraction. This is

probably also the reason why the minimal values of stiffness

estimates based on load sharing were substantially lower than

EMG-based estimates.
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V. Discussion

The objective of this study was to develop a model-based

method for estimating knee stiffness during locomotion. We

have developed such a model, which predicts active stiff-

ness based on kinematic parameters of the knee and the

force-dependent short-range stiffness of the muscles acting

about the knee. Our initial results demonstrate that model

predictions in isometric conditions are robust with respect

to different approaches for estimating muscle force, and that

these predictions are consistent with many features of stiffness

measurements involving joint perturbations. These results also

highlighted areas for improvement, which are described below.

In our isometric validation, estimated values of stiffness

for knee extension torques were very close to experimentally

determined values (Fig. 4). However, the model overestimated

stiffness for knee flexion torques. This could be partly ex-

plained by errors in load sharing, though stiffness estimates

during flexion fall outside of our confidence intervals related to

load-sharing accuracy (Section IV-B). Previous experimental

findings have suggested that active knee stiffness changes

substantially with joint angle [7]. Our previous work has

demonstrated that model-based estimates of arm stiffness are

also sensitive to changes in joint angles and to muscle moment

arms [27]. We have yet to complete similar sensitivity studies

for the knee, though we would expect similar findings. This

would suggest that precise angle measurements and subject-

specific model parameters could lead to improved accuracy.

Our model-based and experimental results were similar to

the two previous studies reported in the literature. Zhang et

al. [7] demonstrated a similar torque-dependent increase in

knee stiffness to that shown in this manuscript, though stiff-

nesses reported by Zhang were approximately 50 % smaller

than our estimates. The discrepancy is likely due to the

difference in perturbation amplitudes used in the two stud-
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ies, since muscle short-range stiffness is known to decrease

with increasing perturbation amplitude [8]; the amplitudes

used by Zhang et al. were 140 % larger than ours. These

amplitude-dependent effects on stiffness estimates have also

been reported at the knee [15]. Larger amplitudes also may

evoke substantial reflexes, which are not explicitly represented

in our model. However, if such reflexes did contribute to

knee stiffness during the continuous perturbations used to

estimate stiffness, they would do so via a continuous change in

muscle activation and force. Such steady-state changes would

be captured in our current modeling approach. Nevertheless,

the role of transient reflexes could be quite important during

locomotion, and is something that will be considered in future

validations of model performance during locomotion.

The stiffness estimates during gait are remarkably similar

in magnitude for both the EMG-based approach and the load-

sharing approach. The difference in timing, however, was sub-

stantial. It is much bigger than what could be expected based

on our sensitivity analysis of stiffness to load-sharing errors in

isometric conditions. This highlights the need to validate how

well these approaches predict muscle force over time, which

we have not attempted to incorporate in our current version

of the model. EMG-based estimates may be improved by

incorporating a more complex EMG-to-force processing [32];

a velocity-dependent component [33] might further improve

estimates, as could a calibrated delay between EMG signal

and force onset, which has been shown to be influenced

by many parameters [34]. EMG-based estimates also can be

improved by combining with load sharing estimates to ensure

that the muscle activations and joint torques are matched

throughout the gait cycle [35]. We are currently evaluating

such approaches to obtain reliable estimates of stiffness during

gait, with the aim to incorporate these in variable-impedance

control of transfemoral prostheses. In this context, the role of

joint viscosity will also have to be addressed, especially its

relative importance compared to joint elasticity.

913



VI. Conclusion

We have developed a model-based approach that allows

quantitative assessment of active knee joint stiffness without

the need for applying perturbations to the joint. Our initial

work has focused on quantifying the accuracy of the model-

based estimates and identifying how they may be improved.

Though there is still work to be done, the model can provide

the first estimates of knee stiffness during locomotion. These

estimates are essential for understanding how the mechanics of

the leg contribute to physiological gait, and for understanding

how to design robotic prostheses that can begin to replicate

that gait in amputees.
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